3DEC analysis of crosswise tension resistance in masonry structures

Shipeng Chen, doctorial student – Katalin Bagi, full professor Department of Structural Mechanics, TU Budapest

The Crosswise Tension Resistance

The phenomenon:

(Simon & Bagi, 2016)

Its importance:

(Beatini et al, 2018)

Overview of the research

Practical experience:

Bond pattern strongly affects crack formation and hence the load bearing capacity.

Main steps of the analysis of each pattern:

- Step 1: Theoretical prediction on the suitably chosen elementary cell of the pattern
- Step 2: Run discovery DEM simulations to figure out how different bond patterns fail
- Step 3: Check the theoretical derivations with DEM experiments

Theoretical derivations: 1. The straight running bond pattern

Theoretical derivations: 2. The skew shifted running bond pattern

Theoretical derivations: 3. The herringbone pattern (1/2)

Theoretical derivations: 4. The herringbone pattern (1/3)

DEM simulation to check the predictions: Material, contact, element subdivision

Data of the 3DEC model:

Elements: linearly elastic, density 1428 kg/m³, bulk modulus: 1.10·10¹0 N/m², shear modulus 0.833·10¹0 N/m²

<u>Joints</u>: frictional, cohesionless, friction angle 38°,

normal stiffness: $1.0 \cdot 10^{10}$ (N/m²)/m, shear stiffness: $0.70 \cdot 10^{10}$ (N/m²)/m

Convergence analysis on the necessary density of element subdivision:

Brick size: $0.25 \text{ m} \times 0.125 \text{ m} \times 0.065 \text{ m}$

	Mesh size (m)	Computation time (min)	Limit tensile stress (N/m²)	Deviation from "Very dense meshing"
Rough meshing	0.03	8	5830	1,9 %
Medium meshing	0.02	16	5760	0,7 %
Dense meshing	0.01	171	5730	0,2 %
Very dense meshing	0.005	2838	5720	

DEM simulation to check the predictions: Validation method

Validation method:

First try: Planar walls, BUT: boundary failure

Instead:

- 1. Apply vertical compressive stresses.
- 2. Apply gradually increasing outwards surface load on the intrados.
- 3. Detect failure and compare to the theoretical predictions.

DEM simulation to check the predictions: Load-displacement diagram

Load-displacement diagram:

Definition:

If the measured displacement for 1% load increment exceeds ten times the value that was accumulated until the last load step, then this is failure.

DEM to check the predictions: Results

Validation result:

Relation between crosswise tensile resistance and vertical compression

Further plans

Generalize theoretical predictions:

for herringbone pattern:

extend simulations for 1/4

Application of the results:

domes:

fan vaults:

by quantifying hoop tension resistance, modify the predictions for their critical thickness

barrel vaults:

bond pattern influences the load bearing capacity, and this can be quantified

Thank you for your attention!

Email: chen.shipeng@epito.bme.hu

kbagi.bme@gmail.com

Doctorial student: Shipeng Chen

Full professor: Katalin Bagi